
HarpGBDT: Optimizing Gradient Boosting Decision
Tree for Parallel Efficiency

Bo Peng1 Langshi Chen1 Jiayu Li1 Miao Jiang1 Selahattin Akkas1

Egor Smirnov2 Ruslan Israfilov2 Sergey Khekhnev2 Andrey Nikolaev2 Judy Qiu1
1Indiana University
2Intel Corporation

{pengb, lc37, jl145, miajiang, sakkas, xqiu}@indiana.edu
{egor.smirnov, ruslan.israfilov, sergey.khekhnev, andrey.nikolaev}@intel.com

trainers provide tens of algorithmic parameters. Hundreds to
thousands of runs of training are often required to find a
combination of the parameters resulted in the accurate model
for a given dataset. Thus, acceleration of the training of the
GBDT is an important problem in research and practice.

GBDT is a boosting method that builds consecutive decision
trees in a strictly sequential fashion. Since the decision tree
provides the capability of modeling nonlinear functions, it
is used as a building block to create complex models, for
example, in Random Forest [10] and GBDT itself. Decision
tree based deep models also demonstrate a comparable per-
formance over deep learning models in [37]. Parallel de-
cision tree construction is the key for a high-performance
GBDT implementation and has been extensively studied in
the data mining community [28] [30] [21] [26]. Recent work
on GBDT show a trend for the convergence of HPC and
big data communities, and state-of-the-art GBDT systems
typically adopt HPC techniques to achieve good performance.
[31] [12] [22] represent the progress of parallel GBDT on
traditional CPU architectures. However, most of the papers
lack parallel performance studies and do not address emerging
many-core architectures. Our analysis of the existing state-
of-the-art systems shows they are not efficiently parallelized,
with a low utilization rate for the CPU cores. [35] [32] [15]
represent another direction of utilizing GPU accelerators. Both
of these approaches have advantages and limitations. As we
will explain in details later in Section III-B2, random memory
access to both the training data and model data are inevitable in
GBDT. Current GPU-based implementations have a limitation
on the allowed dataset and problem size due to the relatively
small size of GPU memory when compared with the CPU-
based system.

In this paper, we focus on optimizations on the CPU
architecture. Based on our experience of parallelizing machine
learning algorithms for the Harp framework [3] [34] [27] [11],
we investigate a parallel GBDT system that is efficient when
increasing the number of processors, the problem size, and
the model size. In the rest of the paper, we use HarpGBDT to
refer to our system. Our main contributions are summarized
as follows:
• Review state-of-the-art CPU-based GBDT training sys-

Abstract—Gradient Boosting Decision Tree (GBDT) is a widely
used machine learning algorithm, whose training involves both
irregular computation and random memory access and is chal-
lenging for system optimizations. In this paper, we conduct
a comprehensive performance analysis of two state-of-the-art
systems, XGBoost and LightGBM. They represent two typical
parallel implementations for GBDT; one is data parallel and
the other one is parallel over features. Substantial thread syn-
chronization overhead, as well as the inefficiency o f random
memory access, is identified. W e p ropose H arpGBDT, a new
GBDT system designed from the perspective of parallel efficiency
optimization. Firstly, we adopt a new tree growth method that
selects the top K candidates of tree nodes to enable the use
of more levels of parallelism without sacrificing t he algorithm’s
accuracy. Secondly, we organize the training data and model
data in blocks and propose a block-wise approach as a general
model that enables the exploration of various parallelism options.
Thirdly, we propose a mixed mode to utilize the advantages of a
different mode of parallelism in different phases of training. By
changing the configuration o f t he b lock s ize a nd p arallel mode,
HarpGBDT is able to attain better parallel efficiency. By extensive
experiments on four datasets with different statistical character-
istics on the Intel(R) Xeon(R) E5-2699 server, HarpGBDT on
average performs 8x faster than XGBoost and 2.6x faster than
LightGBM.

Index Terms—Machine learning algorithms, Parallel algo-
rithms, Performance evaluation, Multithreading

I. INTRODUCTION

Gradient Boosting Decision Tree (GBDT) [17] is a widely
applied machine learning algorithm. It is not only one of the
most popular algorithms in Kaggle competitions [5] but also an
important method to solve industry production level problems
such as click-through rate(CTR) prediction that deals with
billions of advertisement impressions [19]. In recent years,
it has been successfully applied to many different domains,
such as Higgs boson classification [13], c redit s coring [33],
computer-aided diagnosis [25], insurance loss cost modeling
[18], and freeway travel time prediction [36].

Training a GBDT model is a compute-intensive problem.
For example, on a moderate HIGGS dataset with 10M data
instances and 28 features, the state-of-the-art system XGBoost
requires 600 seconds on a 36 core Xeon server to train a model
that consists of 1000 trees of depth 8. An accurate model
needs several times of the number of iterations. Typical GBDT

tems and identify the existing performance issues, includ-
ing thread synchronization overhead and memory access
inefficiency.

• Propose a new tree growth method selecting top K tree
nodes to split, which enables more concurrency at no cost
in model accuracy.

• Propose a new block-wise parallelism method, which
enables us to explore different levels of parallelism and
to control the workset size.

• Propose a mixed mode, which utilizes the advantages of
different modes of parallelism in different phases of the
training.

• Implement HarpGBDT based on TopK growth method
and block-wise parallelism and achieve 2.6x to 8.5x
speedup on the Intel(R) Xeon(R) E5-2699 server.

The source code of HarpGBDT is available at
https://github.com/DSC-SPIDAL/harpgbdt.

II. PRELIMINARIES

A. Gradient Boosting Decision Tree Algorithm

Given a set of feature vectors xi of dimension M labeled as
yi, i = 1, ..., N , our problem is to find function approximation
ŷi = φ(xi) that minimizes the regularized objective function
L(φ) =

∑N
i=1 `(ŷi, yi) + Ω(φ). GBDT adopts a boosting

approach using tree learner, ŷi = φ(xi) =
∑
ft(xi), where

ft(x) is weight w of the leaf node to which x belongs in
the tth decision tree. For example, AIRLINE [1] dataset in
Table III consists of flight arrival and departure details for all
commercial flights within the USA from October 1987 to April
2008. A simple GBDT task is to predict delay for a flight, as
illustrated in Fig. 1.

tree1 tree2

Yes No

Yes No

Yes No

Flights going to Paris

Distance > 1000

Are morning flights

+2 +0.1 -1 -0.9+0.9

Φ() = 2 + (-0.9) = 1.1

Input =
Air Traffic at Chicago O’Hare Airport:

Fig. 1: An example of a tree ensemble of two trees

A second order approximation [16] is applied to a regular-
ized objective function [12],

L(t) ≈
n∑

i=1

[`(ŷ
(t−1)
i , yi) + gift(xi) +

1

2
hif

2
t (xi)] + Ω(ft)

(1)

where gi, hi are the first and second order gradients on the
loss function `, and the regularizer Ω(f) = γT + 1

2λ‖w‖
2.

Here T is the number of leaves, while γ and λ are regulariza-
tion hyper-parameters.

The optimal weight w∗j and objective value for each leaf j
can be obtained as

w∗j = −
∑

i∈Ij gi∑
i∈Ij hi + λ

, L̃(t) = −1

2

T∑
j=1

(
∑

i∈Ij gi)
2∑

i∈Ij hi + λ
+ γT

(2)
where Ij is defined as the set of instances for leaf j. Then

a score function can be derived from L̃(t) to guide node
splitting into two subset 〈L,R〉.

S(L,R) =
1

2

[G2
L

HL + λ
+

G2
R

HR + λ
− (GL +GR)2

HL +HR + λ

]
− γ

(3)

where Gj =
∑

i∈Ij gi, Hj =
∑

i∈Ij hi

Algorithm 1: BuildDecisionTree()

input : dataset D = (xi, yi)
N
i=1, Gradient = (gi, hi)

N
i=1

output: tree f(x)
1 begin
2 q: priority queue
3 root: root node of tree

// collect statistical summary GHSum for
a node

4 BuildHist(root)
// find the best split point for a node

based on GHSum
5 FindSplit(root)
6 q.push(root)
7 while q is not empty do

// pop nodes according to the tree
growth policy

8 nodes = q.pop()
// update the tree by splitting each

node to the left and right children
according to the split point found
by FindSplit

9 children = ApplySplit(nodes)
10 for node in children do
11 BuildHist(node)
12 FindSplit(node)
13 q.push(node)

Algorithm 2: BuildHist()

input : dataset D = (xi, yi)
N
i=1, Gradient = (gi, hi)

N
i=1, M:#

features, B:# bins, node
output: histogram of gradients GHSum ∈ RB×M

1 begin
2 for xi ∈ node do
3 for m =1 to M do
4 GHSum[k,m].g+ = gi, where xim ∈ kth bin
5 GHSum[k,m].h+ = hi, where xim ∈ kth bin

From a single root node, a decision tree is built by recur-
sively splitting the leaf nodes of the tree. Algorithm 1 shows a
general tree building pseudo code, composing with three core
functions, BuildHist, FindSplit, and ApplySplit. Taking AIR-
LINE in Fig. 1 as an example of input dataset, Fig. 2 illustrates
the process of tree building. In the preprocessing step, the raw
dataset is transformed into an internal representation of feature

Input Decision Tree Gradient

2

GHSum

ApplySplit

BuildHist

FindSplit

AIRLINE

r
r
r
r
r
r
r
r
r
r
r
r

Distance

k = 2

m = 5

250

Row ID

1

2

3

4

5

6

7

8

9

10

11

12

Feature ID f f f f f1 2 3 4 5 f6

Node ID

n

n n

n n

n n

1

2 3

4 5

6 7

Flight ID

f f f f f1 2 3 4 5 f6

l
l
l
l
l
l
l
l
l
l
l
l

1

2

3

4

5

6

7

8

9

10

11

12

r2 r6 r11r7[], , ,

Fig. 2: Illustration of the process of tree building. Input is the input
feature vectors with feature values mapped to ”bin” id. Gradient
contains the first order and second order gradients. GHSum maintains
the statistical summary of gradients.

vectors, called ”Input”. First, feature values are converted into
real numbers by encoding. Then a technique named Histogram
is generally utilized to map these numbers into groups, called
bins. Histogram reduces the number of split point candidates
later in the computation in BuildHist. In Fig. 2, we assume that
the 5th column in Input is the feature ’Distance’ in AIRLINE,
its raw value in the 6th row is 250, and Histogram groups
the values in this column into five subgroups by four split
points [200, 500, 1000, 1500]. The feature value 250 falls into
the 2nd subgroup and thus will be mapped to a binid equals
2. Tree building assigns each input data instance to a leaf
node, and the different colors denote membership except that
the white cells in Input represent the missing values. Taking
the blue leaf node as an example, BuildHist first collects
statistical summary of the gradients for this node according
to its feature value distribution, as shown in Algorithm 2.
Then FindSplit enumerates all possible split points, as pairs
of (featureid, binid), in GHSum by calculating the split loss
change according to Eq.3, and picks up the one with the
maximum score. The split condition of ’Distance > 1000’
in Fig. 1 equals to the condition of ’binid > 3’ for the 5th
column, which is the arrow of the FindSplit function indicates
in Fig. 2. Finally, ApplySplit expands the tree by adding two
child leaves and updates the membership for all input instances
in this node correspondingly.

There are two popular tree growth methods: a depthwise
method splits leaves level by level, and a leafwise method
selects the leaf node with the largest value of loss change to
split. In Algorithm 1, these two growth methods are unified
by a priority queue via dedicated comparison functions. The
number of nodes to pop out is the maximum number of leaves
in depthwise and is 1 in leafwise.
D is used to represent the tree size, which contains 2D − 1

nodes. In depthwise, D equals to the tree depth. In leafwise the
tree is usually unbalanced, and the tree depth is much larger
than D. Given a dataset D ∈ RN×M , the time complexity of
BuildHist is O(NMD) in depthwise, in which it goes through
all data instances once at each level of the tree. FindSplit is
O(MB) for each node, and therefore it is exponential to the
tree size D, with behavior O(MB2D). ApplySplit contains
simple operations and is relatively trivial, as O(2D). BuildHist
in leafwise is irregular because the number of instances in
each node dynamically changes and cannot be analytically

predicted, while FindSplit and ApplySplit keep the same
complexity as in the depthwise method.

B. Parallel GBDT Training

GHSum

thread

thread

reduce

Input

(a) Data Parallelism

Input

GHSum

thread

thread

(b) Feature Parallelism
Fig. 3: Parallelism patterns to parallelize BuildHist.

Data Parallelism and Model Parallelism are two major ap-
proaches to parallelizing a serial machine learning algorithm.
They describe how data are partitioned among parallel workers
and how these workers are synchronized as the algorithm
progresses. In GBDT, ’Data’ refers to the input data, and
’Model’ refers to the intermediate data created within the
algorithm as it forms the decision tree. Fig. 3(a) illustrates the
data parallel approach in parallelizing BuildHist. It partitions
input by row and replicates model to all spawned threads. Each
thread works on one row partition and its local model. In the
end, thread local model replicas are reduced to a global one.
Feature Parallelism in Fig. 3(b) is a type of model parallelism,
in which both input and model are partitioned by columns.
Each thread works on one partition of feature columns and
updates the global model without conflicts.

XGBoost [12] and LightGBM [22] are two state-of-the-art
GBDT systems. In its original paper, XGBoost proposes a
feature parallel approach, in which the histogram statistics are
collected for each feature column in parallel. With the success
of the XGBoost open source project, its code evolved quickly,
adding new tree-building modules in an ongoing fashion. One
latest module, tree method=hist, changes to data parallelism,
and achieves better performance. We use the term XGBoost to
refer to this specific data parallel version. LightGBM adopts
a standard feature-wise model parallelism approach.

III. ANALYSIS OF EXISTING GBDT SYSTEMS

To investigate the efficiency of the parallel design of GBDT
trainers, we do a hotspot analysis of two representative sys-
tems: XGBoost and LightGBM. They are implemented in
C++ and support multithreading using OpenMP. We run this
experiment on a machine with 36 physical cores and fix the
number of threads to use at 32. The detailed hardware and
software configurations and datasets used are described in
Section V-A.

A. Hotspot Analysis

We evaluate these two systems with the execution time
breakdown on HIGGS dataset. BuildHist is identified as the
hotspot among the three core functions for all values of the tree
size. In Fig. 4 and Table I, suffixes of ”-Depth” and ”-Leaf”
refers to depthwise and leafwise tree growth method used

8 12 16
0%

20%
40%
60%
80%

100%

37.73(s)3.84(s)

0.50(s)

87%79%
56%

Tree Size

(a) XGB-Depth

8 12 16
0%

20%
40%
60%
80%

100%

7.89(s)

1.79(s)
0.84(s)

55%
77%

90%

Tree Size

(b) LightGBM

8 12 16
0%

20%
40%
60%
80%

100%

7.89(s)

1.79(s)
0.84(s)

55%
77%

90%

Tree Size

BuildHist FindSplit ApplySplit others

Fig. 4: Execution time breakdown for one iteration on HIGGS dataset.

in the trainer. As LightGBM only supports leafwise method,
no suffix is used for it. We only show the results of XGB-
Depth and LightGBM, which are the representatives of the
depthwise and leafwise methods. The result from XGB-Leaf
is similar and hence omitted for brevity. According to the
time complexity analysis in Section II, the time complexity
of BuildHist should be O(D) in depthwise method. However,
we observe exponential growth O(2D) for BuildHist in XGB-
Depth, which indicates the existence of large parallel overhead.

TABLE I: Profiling of XGBoost and LightGBM
Trainer XGB-Depth XGB-Leaf LightGBM
CPU Utilization(cores) 13.9 13.9 19.2
Barrier Overhead 42% 42% 23%
Latency(cycles) 35 37 25
Memory Bound 51.0% 52.9% 54%

Table I summarizes the profiling results of hardware event
counters via Intel(R) VTune(TM) Amplifier on HIGGS with
tree size 8. Low CPU Utilization indicates a poor parallel
efficiency. VTune reports high OpenMP Barrier Overhead on
both trainers. LightGBM spends 23% of the effective CPU
time in spinning. XGBoost spends even more up to 42%. Both
of them also show a high Memory Bound above 50%, which
means over 50% of CPU cycles are waiting for load or store
instructions.

B. Low Parallel Efficiency Problem

1) Thread Synchronization Overhead: OpenMP provides
an easy to use programming model by adding #pragma before
the for-loops to parallelize the code. However, this introduces
a barrier wait at the end of the loop, which might not be
necessary from the original algorithm’s perspective of view.
For leafwise algorithms, XGB-Leaf and LightGBM have to
select the leaf with the largest loss change score in each split.
Therefore, they are constrained to execute leaf by leaf. For
depthwise method, the leaves at the same level of the tree are
independent and can be constructed in parallel. However, as
a data parallelism approach, XGB-Depth maintains a model
replica for each thread. To avoid uncontrolled memory foot-
print of the model replicas, it also implements tree building
leaf by leaf. The amount of thread synchronization overhead is
proportional to the numbers of leavesO(2D) in both of the two
systems. Thread synchronization could introduce significant
overhead, especially when load imbalance is common for
datasets with sparse features and missing values. This explains

the observed high OpenMP barrier overhead and exponential
growth of execution time of BuildHist in Fig. 4.

GHSum[nodeid, featureid, binid] + = Gradient[rowid]

Feature

Bin

Node

Input Gradient NodeMap GHSum

1 2 3 4 5 6

2 4

nodeid = 4
featureid = 5
binid = 2
rowid = 6

Fig. 5: Computation and memory operations in BuildHist.

2) Memory Bound: The hotspot function BuildHist in-
volves four major data structures, including Input, Gradient,
NodeMap, and GHSum, see Fig. 5. NodeMap maintains the
membership of the data instances to the tree node, and it
dynamically changes when the tree splits and grows. A typical
procedure starts with selecting a tree node to grow. Given
the nodeid, NodeMap is retrieved to get the rowid set for the
corresponding data instances. Then, the binid for each feature
is fetched from Input, and gradient is fetched from Gradient
by the given rowid. Finally, GHSum is updated at the position
with the index of 〈nodeid, featureid, binid〉. Memory size
of Input is Θ(NM), NodeMap and Gradient are Θ(N), and
GHSum is Θ(MB2D).

First, the computation versus memory access ratio in GBDT
is low. Excluding the accesses to Input and Gradient which can
be amortized in best cases, one read operation and one write
operation to GHSum, 16 Bytes in Double, involves only one
floating-point computation. The computation versus memory
access ratio here is 1

16 = 0.0625.
Secondly, random memory access is inevitable in BuildHist.

Because of the dynamic nature of the tree splitting, NodeMap
keeps changing along with the tree growth. For leafwise
methods, random memory access to Input and Gradient is
typically needed. And as at least one of the three indexes
of request to GHSum would change dynamically, leading to
random memory access to GHSum. No static memory layout
for GHSum exists that can support sequential accesses all the
time.

IV. HARPGBDT: DESIGN AND IMPLEMENTATION

To improve the efficiency of parallelization, we design
HarpGBDT with optimizations on the hotspot BuildHist to
reduce synchronization overhead, increase concurrency, reduce
random memory access, and improve cache efficiency.

A. Block-wise Parallelism

Initially we investigate concurrency in the parallel tree
construction. In data parallelism, a set of rows (or row blocks)
are the basic unit that can be scheduled as a task in BuildHist.
In model parallelism, each cell in the 3-D matrix GHSum,
as in Fig. 5, can be the basic unit and no conflict of model
updates will exist among the threads in this way. A more
general parallel solution can be a mixture of data parallelism
and model parallelism.

We propose to use a Block as the basic unit for data orga-
nization and parallelism. By viewing both GHSum and Input
as three dimensional data structures, 〈node, bin, feature〉 for
GHSum and 〈row, bin, feature〉 for Input, a Block is defined
as a cube in GHSum and associated cube in Input. Each
cube is implemented as a 3-dimensional array in a row-major
layout. By configuring the Block parameter 〈row blk size ,
node blk size, bin blk size, feature blk size〉, we set the
size of each dimension of the cubes. In this way, we can have
many different designs to build a decision tree in parallel.

First, standard data parallelism equals to 〈X,X, 0, 0〉,
where X indicates a variable instead of a fixed number. In
XGB-Hist, the latest data parallelism version of XGBoost,
row block size is not a fixed parameter. The row set for each
tree node is dynamically partitioned. node blk size is set to
1 in order to constrain the memory footprint of the model
replicas.

Secondly, traditional feature-wise model parallelism equals
to 〈X,X, 0, 1〉 in block-wise parallelism, where size 0 refers
to all. In the original version of XGBoost [12], row blocks
were proposed to mitigate the long-distance random memory
access to Gradient in a feature-wise method. It equals to
set row blk size to ”X” here. node blk size equals to 0
in XGB-Approx. It scans each column of Input sequentially
at the cost of writing to a relatively large region of model
memory, which is a vertical plane crossing all tree nodes in
GHSum. LightGBM adopts standard feature parallelism with
row blk size equals to 0 and node blk size equals to 1.

Beyond standard feature-wise parallelism, model paral-
lelism in GDBT has many other options which are not
fully explored. 1) Block-wise feature level parallelism Set
feature blk size enables a trade-off of preferences between
read operations and write operations. Small value, as in tra-
ditional feature-wise parallelism, is good for write operations
but brings extra reads to Gradient. Large value, as in data
parallelism, is good for read operations but may incur large
cache miss when writing to the large size of memory region
randomly. 2) Bin level parallelism When organizing Input
with ”bin” dimension partitions, it enables model parallelism
even when the number of features is small. However, each
data cube of Input becomes sparse. The additional cost to
sparse data structure makes it less efficient. 3) Node level
parallelism In node level parallelism, the computations in
each tree node, including BuildHist and FindSplit, can be
assigned to one thread, thus has the advantages of fewer thread
synchronizations. Setting node blk size enables a trade-off
between a fewer number of thread synchronizations and a
larger size of the memory region for write operations. Further-
more, from the algorithm’s perspective of view, many of those
thread synchronizations are not required at all in depthwise
method. The candidates selected for splitting can do their work
independently, and synchronization is only necessary when
updating the tree structure and the priority queue. However,
node level parallelism can only be applied if there are enough
tree leaf nodes to split. It can not be applied in the beginning
phase of tree building, and not in leafwise growth method,

which strictly processes one node after another.

B. TopK Tree Growth Method

In order to utilize node-level parallelism in leafwise growth
method, we propose a new tree growth method which ex-
tends the existing one by selecting top K, rather than top
1, candidates with the largest loss change values from the
priority queue. In this way, a ’K’ fold node-level parallelism
is enabled, as in Fig. 6(d). TopK is a mixture of depthwise and
leafwise growth methods. On the one hand, top K candidates
splitting at the same time will build a different tree that
achieves less accuracy on the training data when compared
with the top 1 approach. On the other hand, it may build a
more robust decision tree because it mitigates the tendency of
continuously splitting inside one node to form a very deep tree
in some particular cases. By intuition, the new algorithm can
achieve a similar performance of accuracy when K is not too
large. TopK method also supports the depthwise mode. As in
Fig. 6(b), only a subset of K leaves are selected each time,
rather than all leaves selected at the same time in depthwise.

(a) depthwise (b) TopK depthwise

(c) leafwise (d) TopK leafwise
Fig. 6: Illustration of tree growth method. (a)(c) are examples
of standard depthwise and leafwise. (b)(d) are examples of TopK
methods(K=2). Blue nodes refer the candidates selected to split.

C. Mixed Mode of Parallelism

Data parallelism and model parallelism have their advan-
tages and disadvantages and fit best to the different problem
settings. We propose mixed modes of parallelism by applying
different approaches in different phases of the tree building
process. In this way, we combine the advantages of them.

One scenario to apply a mixed mode is for node-level
parallelism. The beginning phase of tree building starts with
a new parallelism mode. When the tree grows to a number
of leaves larger than the threads number T , it switches to
node-level parallelism. At the end phase, it switches back as
the number of leaves to split drops below the threshold T .
Another scenario is for the case of a dataset with a small
number of features, where data parallelism is better choice in
the beginning to fully utilize the available CPU cores. When
the tree grows, an increasing number of leaves makes it an
option to switch to model parallelism which schedules the
tasks on both the feature and node level.

With TopK, thread synchronization is needed after process-
ing K leaves so as to select the next global top K candidates.
We refer to this strict TopK method as ”SYNC”. If we remove
the constraint of the global top K and allow K threads to select
the top candidate as best as they can, synchronization is no

TABLE II: Four Modes of Parallel Designs for GBDT.
Mode Description
DP data parallelism
MP model parallelism
SYNC mixed mode (DP, MP, DP)
ASYNC mixed mode (DP/MP, node parallelism, DP/MP)

longer required. This loosely coupled TopK method is denoted
by ”ASYNC”.

Table II categorizes four modes supported by HarpGBDT.
Together with block-wise parallelism and TopK growth
method, it helps HarpGBDT to fit the scenarios with respect
to different input shape and size for optimal performance.

D. Reducing Thread Synchronization Overhead

Reducing the number of times entering the parallel regions
in OpenMP is one straight-forward solution to reduce thread
synchronization overhead. By setting the node blk size to H ,
H selected candidates will be processed in one parallel region.
To build a tree with L nodes, the number of synchronizations
drops from L to L

H .
A more aggressive solution is applying ASYNC mode.

ASYNC schedules all the computation involved within one
tree node as a single task in the intermediate phase by
applying node parallelism; in this way, it avoids all the for-
loops barrier wait overhead. Note that splitting nodes in tree
building is not a embarrassingly parallel process. Different
threads have to synchronize when they access the shared
data structures, including the priority queue and the tree. A
lightweight spin mutex works well in this scenario and gives
much less overhead comparing to for-loops barrier wait.

E. Optimization for Memory Access

Input In Input, the original feature values are replaced by
its bin id counterpart in a prepossessing step. This will reduce
the memory footprint to 1

4 as bin id need only 1 Byte when
max bin size is 256, which is sufficient in general.

Gradient Tree building will scan the row id set for each
candidate leaf node, fetching input data from Input and Gra-
dient by the row id. Non-contiguous row ids lead to random
memory access. Moreover, Gradient may need to read for
multiple times. E.g., in feature parallelism, threads working
on different feature columns all need to read the same row of
Gradient. To reduce the multiple random access, we extend
row id in NodeMap with corresponding gradients, denoted
as MemBuf, as in Fig. 7. Because the gradients are always
accessed along with the corresponding row ids for a node,
MemBuf can increase the cache efficiency.

GHSum Each element of Input incurs one read and one
write operation on GHSum, as in Fig. 5. Consecutive access on
GHSum should be confined to a small region to avoid frequent
cache miss. For simplicity, assume a dataset with M features
and all features have the same number of bins, 256 by default.
Each element in GHSum is two doubles for summations of
gradients. One feature occupies the memory of size 256×16 =
4K Bytes.

Input GradientNodeMap

1 2 3 4 5 6

1

Node 0

4

6
7
8

10
11
12

Node 2

Node 1

Split

2
5
9

2
3

5

9

Fig. 7: MemBuf: Extending NodeMap with a replica of Gradient by
keeping (rowid, gradients) pairs.

Data parallelism processes the whole row of input consecu-
tively, in which a region of 4K ×M is involved. It will incur
a large number of cache miss when M goes large. Feature
parallelism has advantages in accessing GHSum. In depthwise
method, the bin ids can be resorted in order by prepossessing,
then the region of consecutive access is confined to size L,
where L is the number of leaf nodes. In leafwise method,
consecutive accesses happen on the same node and the same
feature in GHSum, and the region size becomes 4K. In our
block-wise method, this region size can be configured, which
is 16 × bin blk size × feature blk size × node blk size.
By setting the size parameters corresponding to the shape of
the input dataset, we can tune the performance and keep the
balance between read and write operation efficiency.

V. EXPERIMENTS

A. Experimental Setup

1) Hardware and Software Configure: All experiments are
conducted on the server with 2x18-core Intel(R) Xeon(R) E5-
2699 v3 processors and 128 GB memory. On this NUMA
machine with 36 physical cores, we fixed the thread number
to 32, with the default interleave memory policy. OS is Red
Hat Enterprise Linux 7. All GBDT trainers are compiled
with gcc 4.9.2 and -O3 compilation optimization. Intel(R)
VTune(TM) Amplifier 2018 and Advisor(TM) 2019 are used
as the performance profiling tool.

2) GBDT Implementations: XGBoost [8], LightGBM [6]
are two systems for comparison. HarpGBDT is based on the
XGBoost code base, reusing the code of histogram initializa-
tion algorithm and focusing on the optimizations to improve
parallel efficiency.
TABLE III: Dataset. N is #instances. M is #features. S refers to
sparseness and CV is dispersion of # bins distribution.

Dataset N M S CV Size TestN
HIGGS [4] 10M 28 0.92 0.40 5.3G 100K
AIRLINE [1] 100M 8 1 0.89 5.4G 1M
CRITEO [2] 50M 65 0.96 0.58 45G 1M
YFCC [9] 1M 4096 0.31 0.06 19G 100K
SYNSET 10M 128 1 0 18G N/A

3) Datasets: Four open datasets are used in the experiments
and listed in Table III, where S = #element

N×M represents the
sparseness, CV = stdev

mean measures the dispersion of the
number of bins distribution over all the features. The larger

this number, the more uneven of the distribution is, which
indicates workload imbalance. SYNSET is a synthetic dataset
with randomly generated feature values following a normal
distribution. It has an even feature value distribution and
always builds a balanced tree by GBDT, which represents an
ideal even workload scenario.

4) Algorithm and Evaluation Parameters: We fix the train-
ing related parameters with widely used settings as: γ = 1.0,
λ = 1.0, learning rate = 0.1, min child weight = 1,
binary logistic loss. As we focus on efficiency evaluation in
order to find out the pros and cons of different parallel designs
and optimizations, keeping the same workload of computation
in comparison is essential. Differences of algorithm optimiza-
tions, such as feature bundling, category feature encoding, and
sampling, can potentially lead to large performance difference
but are not evaluated in the experiments. Optimizations that
achieve better speed at cost of compromised accuracy, such
as using single precision in BuildHist, are also not included.
For the training parameters, the settings have impacts on the
accuracy, and some of them have significant impacts on the
speed, such as tree size. A thorough discussion of the trade-
offs caused by parameter setting is related to parameter tuning
and is useful in practice, but beyond the scope of this paper.

Performance evaluation focuses on training time using the
wall clock time. It excludes the time spent on data loading
and one-time initialization, which is a small constant value
for a dataset in each implementation. In GBDT training,
the workload of computation on consecutive trees gradually
shrinks due to the decreasing of the gain to split the fine-tuned
trees later on. Pruning algorithms adopted in the trainers can
affect the execution time of tree building, especially in the later
phase. In order to reduce this impact, the average training time
per tree is measured for the first 100 trees.

Area Under The Curve (AUC) is used to evaluate model
accuracy. When considering the accuracy, training time to
achieve the same highest AUC when training with 1000 trees
is used as the performance metric and Convergence Speedup
is defined as the ratio of this metric on two systems.

B. Effectiveness of TopK Tree Growth Method

Fig. 8 shows the convergence rate of the three trainers in
leafwise mode. TopK method starts from a lower accuracy but
soon catches up and even gets better accuracy. In depthwise
mode, TopK method and the standard method build the same
tree and achieve the same convergence rate.

Fig. 9 demonstrates that accuracy is robust for a large
range of K. Accuracy under K = 16 can catch up fast and
exceed the standard method (K = 1). K = 32 shows a
larger gap in the beginning and catches up slowly. We run
this experiment under a worst-case condition for large K by
setting the parameters with small tree size and ASYNC mode.
Results on other datasets and settings, omitted here due to
space limitations, show that K = 32 works well in other
modes or on larger trees.

0 200 400 600 800 1,000
0.6

0.7

0.8

800 850 900 9501,000

0.848

0.850

0.852

Number of Trees

AU
C

(a) HIGGS

0 200 400 600 800 1,000
0.6

0.7

0.8

800 850 900 9501,000

0.805

0.810

0.815

0.820

Number of Trees

AU
C

(b) AIRLINE

200 400 600 800 1,000

0.83

0.84

0.85

Number of Trees

AU
C

XGB-Leaf LightGBM HarpGBDT-Leaf

Fig. 8: Comparison of convergence rate for TopK. (D = 8,K = 8)

0 200 400 600 800 1,000
0.6

0.7

0.8

800 850 900 9501,000

0.848

0.850

0.852

Number of Trees

AU
C

(a) HIGGS

0 200 400 600 800 1,000
0.6

0.7

0.8

800 850 900 9501,000

0.800

0.805

0.810

0.815

Number of Trees

AU
C

(b) AIRLINE

0 200 400 600 800 1,000
0.65

0.7

0.75

0.8

0.85

800 850 900 9501,000

0.800

0.805

0.810

0.815

Number of Trees

AU
C

K1 K8 K16 K32

Fig. 9: Impacts of K on convergence rate for TopK. (D = 8,ASYNC)

C. Block Configurations and Parameter Tuning

HarpGBDT provides a group of system parameters, as in
Table IV. Proper settings of these parameters enable the system
to deliver optimal performance and keep efficient with differ-
ent inputs. We start parameter tuning experiments on SYNSET
in order to learn the influence of configurations. We set the
thread number T = 32 and bin blk size = 256, disable
blocks along the bin dimension in the following experiments.

TABLE IV: System Parameters of HarpGBDT
Parameter Description
K number of candidates selected each time
mode mode of parallelism(DP,MP,SYNC,ASYNC)
row blk size row block size(N

T
, 2N
T

...1)
node blk size node block size(1...K)
bin blk size bin block size(1...256)
feature blk size feature block size(1...M)

Fig. 10 shows the influence of feature and node block size
on performance. In this experiment, we set row blk size =
N
T to enable data parallelism to fully utilize the CPU cores;
K = 32. Training time is normalized over the result of stan-
dard model parallelism, which equals to feature blk size =
1,K = 1. We have the following observations: 1) Significant
performance gain can be achieved by adjusting the block
parameters, as a maximum of 2.94x to 2.96x speedup is ob-
served for DP and MP, respectively. 2) Both Data Parallelism
and Model Parallelism favor a medium size of feature block
when node blk size is 1. As shown in the first columns of
Fig. 10, the medium size of the feature block gets the best
performance. It justifies the presumption that there should be
a trade-off between read and write operations in GBDT, as
read operation works well on large feature blocks while write
operation favors small ones. 3) A mutual restriction exists
between these two parameters. Larger node blk size boosts
the performance only if the feature block size is small, when it

1 4 8 16 32

Node Block Size

1

4

8

16

32

64

128

Fe
at

ur
e

B
lo

ck
 S

iz
e

1.05 1.82 2.23 2.60 2.84

1.76 2.23 2.46 2.70 2.96

1.78 1.87 1.87 1.83 1.53

1.93 1.59 1.40 1.17 0.97

1.51 1.09 0.92 0.76 0.63

0.64 0.43 0.37 0.32 0.28

0.29 0.20 0.18 0.16 0.14
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Speedup of T
raining T

im
e

(a) MP D8

1 4 8 16 32

Node Block Size

1

4

8

16

32

64

128
Fe

at
ur

e
B

lo
ck

 S
iz

e

1.03 1.74 2.18 2.53 2.75

1.65 2.14 2.42 2.71 2.94

1.80 2.09 2.27 2.47 2.58

2.30 2.42 2.48 2.51 2.50

2.51 2.66 2.62 2.53 2.47

1.98 2.34 2.32 2.24 2.22

1.61 1.99 1.96 1.95 1.95
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Speedup of T
raining T

im
e

(b) DP D8
1 4 8 16 32

Node Block Size

1

4

8

16

32

64

128

Fe
at

ur
e

B
lo

ck
 S

iz
e

1.14 1.75 2.01 2.28 2.51

2.22 2.59 2.70 2.77 2.91

2.37 2.41 2.36 2.30 1.68

2.81 2.44 2.18 1.70 1.25

2.38 1.82 1.46 1.15 0.82

1.25 0.85 0.69 0.55 0.44

0.61 0.43 0.36 0.29 0.23
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Speedup of T
raining T

im
e

(c) MP D12

1 4 8 16 32

Node Block Size

1

4

8

16

32

64

128

Fe
at

ur
e

B
lo

ck
 S

iz
e

0.95 1.16 1.21 1.32 1.34

1.55 1.62 1.44 1.52 1.56

1.66 1.70 1.49 1.43 1.53

1.87 1.93 1.62 1.55 1.47

1.69 2.09 1.59 1.51 1.16

1.00 1.73 1.56 1.20 1.06

0.56 1.19 1.14 0.97 0.98
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Speedup of T
raining T

im
e

(d) DP D12
Fig. 10: Training time speedup over standard Model Parallelism.
Leafwise Growth. MP refers to model parallelism, DP refers to data
parallelism. Tree size denoted as D#.

provides enough blocks to the scheduler in Model Parallelism
and low cache miss rate in Data Parallelism.

8 10 12 14 16

101

Tree Size

A
ve

ra
ge

Tr
ai

ni
ng

Ti
m

e
Pe

rT
re

e(
s)

(a) row blk size = N
T

8 10 12 14 16

101

Tree Size

A
ve

ra
ge

Tr
ai

ni
ng

Ti
m

e
Pe

rT
re

e(
s)

(b) row blk size = 4N
T

8 10 12 14 16101

102

A
ve

ra
ge

Tr
ai

ni
ng

Ti
m

e
Pe

rT
re

e(
s)

DP MP ASYNC SYNC

Fig. 11: Performance of parallelism modes over tree size.

Fig. 11 shows the performance trend of the four par-
allelism modes over tree size. In this experiment, we set
〈feature blk size, node blk size〉 to 〈4, 32〉 at D8, 〈32, 4〉
at D12 and D16. We have the following observations: 1)
SYNC mode is effective that it achieves similar or better
performance than DP and MP in all the cases. 2) ASYNC
has noticeable overhead in a small tree but achieves the best
performance in large trees. It shows the best capability of
scaling over the tree size. 3) D16 is a stress testing that
each tree splits to 65536 leaves, i.e., each node contains
about N

216 = 152 data instances at the end. Fig. 11(a) shows
the performance of all modes except MP degrade in D16.
DP related modes are affected because of synchronization
overhead, as the default setting of row blk size = N

T makes

a large number of small row set and thus too many small tasks.
By adjusting row blk size to a larger value, as in Fig. 11(b),
DP and ASYNC boost up about 50% at D16.

D. Effectiveness of Optimization

In order to evaluate the effectiveness of the proposed
optimizations, we run a serial of experiments on SYNSET by
adding optimizations incrementally. Starting from the baseline
of standard Feature Parallelism(feature blk size = 1,K =
1) and Data Parallelism (feature blk size = 128,K =
1), the first step is adjusting feature blk size, denoted as
”+Block”. We set it to 4 in Model Parallelism and 32 in
Data Parallelism. Adding MemBuf is the second step. Then,
we increase K to 32 and adjust node blk size accordingly.
Finally, we change the mode to a mixed mode, SYNC in D8,
and ASYNC in D12. Table. V shows the training time speed up
in each consecutive step. ”+Block” for Data Parallelism incurs
performance loss 13% in D8, and recovers by ”+MemBuf.” It
demonstrates that a single optimization does not guarantee per-
formance gain under every scenario and various optimizations
work better together.

TABLE V: Performance Gain with Individual Optimizations.
Mode Size +Block +MemBuf +K32 +MixMode
MP D8 104% 14% 60% 8%
MP D12 146% 22% 51% 48%
DP D8 -13% 16% 77% 4%
DP D12 170% 2% 28% 96%

TABLE VI: Comparison of Profiling Result

Trainer Depth Leaf
HarpGBDT XGB HarpGBDT LightGBM

CPU Utilization(cores) 27.5 13.9 28.5 19.2
Barrier Overhead 9% 42% 8% 23%
Latency(cycles) 15 35 16 25
Memory Bound 38% 51.0% 41% 54%

E. Parallel Efficiency

This set of experiments evaluate parallel efficiency
from different angles on HIGGS. For the parameters set-
ting, HarpGBDT adopts DP mode for D8 and ASYNC
mode for larger trees, K = 32, feature blk size =
4, node blk size = 32.

First, profiling results on D8, as in Table VI, shows that
the OpenMP barrier overhead is significantly reduced in
HarpGBDT, which drops from 23% and 42% to around 9%.
Data Parallelism with large K and node blk size efficiently
reduce the synchronization overhead. Memory-related metrics
also improve due to the better block size configurations.
Results on D12 shows more advantages of ASYNC, in which
the barrier overhead ratio drops to 2%.

Secondly, HarpGBT scales better over the tree size, as
shown in Fig. 12.

Thirdly, we run strong scaling and weak scaling tests.
Given execution time Tn on n parallel workers, the parallel
efficiency for strong scaling is T1

n×Tn
×100%, and is T1

Tn
×100%

for weak scaling. In Fig. 13(a), HarpGBDT relatively scales
better, shows that the optimizations enable it to utilize more
computation resources efficiently. When applying GBDT, it is
a challenging big data issue to deal with the ever-increasing

data volume. Weak scaling is more suitable in this case. We
increase the input size proportional to the number of threads by
duplicating the HIGGS dataset. As in Fig. 13(b), HarpGBDT
shows significantly better weak scaling efficiency.

8 10 12 14 16

101

102

Tree Size

N
or

m
al

iz
ed

Ti
m

e

(a) DepthWise

8 10 12 14 16

101

102

Tree Size

N
or

m
al

iz
ed

Ti
m

e
(b) LeafWise

101

102

m
al

iz
ed

Ti
m

e

HarpGBDT XGBOOST LightGBM NodeNum

Fig. 12: Trend of training time over the tree size.

1 8 16 24 32 36
0

20
40
60
80

100

Number of threads

P
ar

al
le

l
E

ffi
ci

en
cy

(a) Strong Scaling

4 8 12 16 20 24 28 32 36
20
40
60
80

100

Number of threads

P
ar

al
le

l
E

ffi
ci

en
cy

(b) Weak Scaling

48
20
40
60
80

100

P
ar

al
le

l
E

ffi
ci

en
cy

XGB-Leaf LightGBM HarpGBDT

Fig. 13: Parallel efficiency on HIGGS D12.

0 200 400
0.8

0.82

0.84

0.86

Training Time(s)

AU
C

(a) D8

0 500 1,000 1,500
0.8

0.82

0.84

0.86

Training Time(s)

AU
C

(b) D12

0 200 400
0.8

0.82

0.84

0.86

AU
C

HarpGBDT XGB-Leaf LightGBM

Fig. 14: Trend of convergence speed.

Finally, we evaluate parallel efficiency by the convergence
speed of the three systems. In Fig. 14(a), although LightGBM
is about 2x slower than HarpGBT in the beginning, it finishes
the 1000 trees at nearly the same time with lower accuracy.
In Fig. 14(b), HarpGBT shows strong performance when
increasing tree size to D12, and the job finishes with much
faster convergence speed.

F. Roofline Model

Performance results demonstrated in Fig. 13 show that the
scaling is not linear even after optimizations. The first reason
for this is that the code is not fully parallelized. We focus
on only the hotspot function BuildHist. There are also some
serial parts of code, such as the tree structure update. The
memory-bound nature of GBDT is another factor. We run
a roofline analysis by Intel(R) Advisor 2019 on the GBDT
systems. Results of BuildHist, which take the most time,
are presented in Fig. 15. HarpGBDT, especially the ASYNC
mode in D12 achieves much better performance in terms
of bandwidth utilization than the baselines. However, our
results still lie between the L3 cache and DRAM bandwidth
diagonal lines, which indicate memory bandwidth limitations
preventing the function from achieving better performance. On
our experimental server, L3 cache bandwidth scales linearly

over the number of cores, but DRAM bandwidth gets saturated
soon after 16 cores.

0.01 0.1 1 10
1

10

100

1,000

DRAM Bandwidth: 122.74 GB/s

L3 Bandwidth: 1139.83 GB/s

DP Vector Add Peak: 372.47GFLOPS

FLOP/Byte(Arithmetic Intensity)

G
FL

O
P

S

XGBOOST

LightGBM

ASYNC

SYNC

MP

DP

Fig. 15: Roofline Analysis on HIGGS D12.

G. Overall Performance

We use four datasets to evaluate the overall performance by
the metrics of training time speedup and convergence speedup.

8 12 160

10

20

2.77 3.86

13.52

2.85

8.05

21.78

1.98
3.95

6.83

Tree Size

Tr
ai

ni
ng

tim
e

sp
ee

du
p

(a) HIGGS

8 10 120

2

4

6
4.42

3.88 3.87
4.4

5.04
5.75

2.14 2.35 1.99

Tree Size

Tr
ai

ni
ng

tim
e

sp
ee

du
p

(b) AIRLINE

8 9 100

10

20
22.88 22.28

11.29
14.09

1.95 1.86 1.7

Tree Size

Tr
ai

ni
ng

tim
e

sp
ee

du
p

(c) YFCC

8 12 160

2

4

6
4.14

2.18

3.343.64

5.49

3.93
3.46

4.82

2.8

Tree Size

Tr
ai

ni
ng

tim
e

sp
ee

du
p

(d) CRITEO

4

6
4.14

3.343.64

5.49

3.93
3.46

4.82

sp
ee

du
p

HarpGBDT-Depth vs XGB-Depth HarpGBDT-Leaf vs XGB-Leaf HarpGBDT-Leaf vs LightGBM

Fig. 16: Training time speedup on four datasets.

8 12 160

10

20

30

2.53 3.02

8.1

2.57

9.63

27.52

1.57
4.49 4.37

Tree Size

C
on

ve
rg

en
ce

S
pe

ed
up

(a) HIGGS

8 12 160

2

4

6
4.55

2.51 2.793.12
4.1

5.46

1.86 2.23

1.25

Tree Size

C
on

ve
rg

en
ce

S
pe

ed
up

(b) AIRLINE

8 9 100

10

20
21.39 23.02

13.1
14.93

2.17 2.24 1.94

Tree Size

C
on

ve
rg

en
ce

S
pe

ed
up

(c) YFCC

8 10 120

2

4
4.06

1.55

2.41

3.57
4.27

4.78

3.31
3.88

2.74

Tree Size

C
on

ve
rg

en
ce

S
pe

ed
up

(d) CRITEO

4

6
4.14

3.343.64

5.49

3.93
3.46

4.82

sp
ee

du
p

HarpGBDT-Depth vs XGB-Depth HarpGBDT-Leaf vs XGB-Leaf HarpGBDT-Leaf vs LightGBM

Fig. 17: Convergence speedup on four datasets.

YFCC and AIRLINE are two types of input with a very
different shape. For fat matrix input YFCC, as discussed
in Section V-C, standard DP does not work well due to
inefficient write operations and large memory footprint. XG-

Boost fails with an error of out-of-memory at tree size 10.
HarpGBDT shows more than 10x speedup over XGBoost.
Standard feature-wise MP also does not work well due to
inefficient read operations. HarpGBDT shows more than 1.7x
training time speedup and 1.9x convergence speedup over
LightGBM. For thin matrix input AIRLINE, DP is a better
choice than MP in small tree D8. When changing to ASYNC
on D12 and D16, it achieves more than 4x training time
speedup and 3x convergence speedup over XGBoost. It is
hard to learn a robust model by leafwise method on CRITEO,
even after we set min child weight = 100 to control over-
fitting. The leafwise method builds deep trees with depth more
than 150 in case of large tree size. One possible reason is
the response variable replacement encoding, which generates
features highly correlated with the response variable and make
it prone to keep splitting within one branch of the tree. In this
case, HarpGBT achieves an average more than 3x speedup
over XGBoost and LightGBM.

Across the four datasets, HarpGBT is 8.7x faster in training
time and 8.5x faster in convergence speed than XGBoost, and
3x faster in training time and 2.6x faster in convergence speed
than LightGBM.

VI. RELATED WORK

XGBoost and LightGBM are generally used as the baselines
for GBDT evaluations. In addition to CPU architectures, using
GPU to accelerate GBDT algorithm is also an important topic.
GPU-GBDT [32] reports 1.5-2x speedup with Titan X vesus
2x10-core Xeon E5-2640. CatBoost [15] claims 2.3x speedup
with Tesla P100 versus Xeon E5-2660, and [35] shows 7-
8x speedup with GTX 1080 versus 2x14-core Xeon E5-2683.
These works demonstrate promising performance speedup.
Since GBDT training is a memory-bound problem, high
bandwidth memory is critical in accelerating the computation.
When all the training data and model data can fit into the
device memory, a GPU-based implementation may outperform
the CPU-based system due to the support of higher memory
bandwidth. Compared with HarpGBDT with 2x18-core Xeon
E5-2699 on HIGGS D8 and D12 datasets, the latest version
of GPU-GBDT, ThuderGBM [7] shows 0.7-0.9x speedup on
a single GPU of K80 and 3-4x speedup on Tesla V100.
However, when the data can not fit into the device memory, the
performance will degrade abruptly due to the bottleneck of the
bandwidth between host memory and device memory, or can
even fail with an out-of-memory error. For example, V100 has
16GB GPU memory, on which ThuderGBM fails with OOM
error on HIGGS D16 of a large model with GHSum around
7GB; it also fails on YFCC and CRITEO, which have input
larger than 16GB.

XGBoost and LightGBM build distributed GBDT upon
a collective communication layer. [24] proposes PV-Tree, a
voting approximation which avoids a large volume of data
communication. DimBoost [20] deploys a large scale dis-
tributed GBDT system based on the parameter server ar-
chitecture [23] and integrates with Yarn and HDFS, which
is popular in a typical industry production environment.

[14] proposes an asynchronous implementation on parameter
server. HarpGBDT provides a high-performance kernel, and
the experiences learned to improve parallel efficiency can also
be helpful for the distributed system design.

Many related works focus on algorithm optimizations. pG-
BRT [31] first proposed to utilize histograms to speed up the
creation of decision tree in the GBDT algorithm. LightGBM
[22] and DimBoost [20] all propose feature bundling methods
to deal with sparse features. GBDT-Sparse [29] proposes L1
regularization for high dimensional sparser output problem and
demonstrates 40x speedup. These algorithm optimizations are
orthogonal to our work on parallel efficiency and can inte-
grate with our parallelism approaches for further performance
increases.

VII. CONCLUSIONS AND FUTURE WORK

This paper improved the parallel efficiency of decision tree
building in the popular GBDT algorithm and implemented it
with HarpGBDT as a high-performance kernel. The proposed
approaches include a block-wise parallelism strategy and a
TopK extension of tree growth method to fully utilize the
potential parallelism in GBDT. By adjusting the block config-
uration, performance related to memory access can be tuned.
By selecting different parallel method based on the shape of
the input matrix and the phase of tree growth, thread syn-
chronization overhead is reduced significantly. Performance
evaluations on four open datasets with quite different shapes
and characteristics show that HarpGBDT outperforms two
state-of-the-art systems and achieves a speedup of 2.6x to 8.5x
on average and up to 27x on large tree size.

Many topics not covered in this work can be explored
further based on our high-performance HarpGBDT kernel.
First, study the optimization approaches on CPU and GPU
architectures and combining their advantages is an exciting
direction. Secondly, exploring the applicability of proposed
block-wise parallelism method to other machine learning
algorithms is promising. Thirdly, further improving memory
efficiency and multi-core scaling is still in need. One direction
is the optimizations for NUMA system, and another one is
the micro-optimizations on instructions level. Vector instruc-
tion sets and explicit prefetching employed in Intel(R) Data
Analytics Acceleration Library demonstrate advantages over
the compilers generated vectorization code. We can adopt
their optimizations with our described approach to achieve
better results. Finally, optimizations for other functions beyond
BuildHist, such as histogram initialization, and exploring the
trade-off between accuracy and efficiency can also be impor-
tant in practice.

ACKNOWLEDGMENTS

We gratefully acknowledge support from the Intel Parallel
Computing Center (IPCC) Grant, NSF 1443054 CIF21 DIBBs
1443054 Grant, and Indiana University Precision Health Ini-
tiative. We also appreciate the system support offered by
FutureSystems.

REFERENCES

[1] AIRLINE dataset. http://stat-computing.org/dataexpo/2009/. [Online;
accessed 15-Apr-2019].

[2] CRITEO dataset. http://labs.criteo.com/2013/12/download-terabyte-
click-logs. [Online; accessed 15-Apr-2019].

[3] Harp. https://dsc-spidal.github.io/harp/. [Online; accessed 15-Apr-2019].
[4] HIGGS dataset. https://archive.ics.uci.edu/ml/datasets/HIGGS. [Online;

accessed 15-Apr-2019].
[5] Kaggle 2017 survey results. https://www.kaggle.com/amberthomas/kaggle-

2017-survey-results. [Online; accessed 15-Apr-2019].
[6] LightGBM github repository. https://github.com/microsoft/LightGBM.

[Online; accessed commit 7282533 on Dec 9, 2018].
[7] ThunderGBM github repository. https://github.com/Xtra-

Computing/thundergbm. [Online; accessed on Apr 9, 2019].
[8] XGBOOST github repository. https://github.com/dmlc/xgboost/. [On-

line; accessed commit 6a569b8 on Jan 3, 2019].
[9] YFCC100M dataset. http://multimediacommons.org/. [Online; accessed

15-Apr-2019].
[10] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[11] L. Chen, B. Peng, B. Zhang, T. Liu, Y. Zou, L. Jiang, R. Henschel,

C. Stewart, Z. Zhang, and E. Mccallum. Benchmarking Harp-DAAL:
high performance hadoop on KNL clusters. In Cloud Computing
(CLOUD), 2017 IEEE 10th International Conference on, pages 82–89.
IEEE, 2017.

[12] T. Chen and C. Guestrin. Xgboost: a scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, pages 785–794. ACM, 2016.

[13] T. Chen and T. He. Higgs boson discovery with boosted trees. In NIPS
2014 workshop on high-energy physics and machine learning, pages
69–80, 2015.

[14] C. Daning, X. Fen, L. Shigang, and Z. Yunquan. Asynch-SGBDT:
asynchronous parallel stochastic gradient boosting decision tree based
on parameters server. arXiv:1804.04659 [cs, stat], Apr. 2018. arXiv:
1804.04659.

[15] A. V. Dorogush, V. Ershov, and A. Gulin. Catboost: gradient boosting
with categorical features support. arXiv preprint arXiv:1810.11363,
2018.

[16] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression:
a statistical view of boosting (with discussion and a rejoinder by the
authors). The annals of statistics, 28(2):337–407, 2000.

[17] J. H. Friedman. Greedy function approximation: a gradient boosting
machine. Annals of statistics, pages 1189–1232, 2001.

[18] L. Guelman. Gradient boosting trees for auto insurance loss cost
modeling and prediction. Expert Systems with Applications, 39(3):3659–
3667, 2012.

[19] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah,
R. Herbrich, and S. Bowers. Practical lessons from predicting clicks on
ads at facebook. In Proceedings of the Eighth International Workshop
on Data Mining for Online Advertising, pages 1–9. ACM, 2014.

[20] J. Jiang, B. Cui, C. Zhang, and F. Fu. DimBoost: boosting gradient
boosting decision tree to higher dimensions. In Proceedings of the 2018
International Conference on Management of Data, pages 1363–1376.
ACM, 2018.

[21] R. Jin and G. Agrawal. Communication and memory efficient parallel
decision tree construction. In Proceedings of the 2003 SIAM Interna-
tional Conference on Data Mining, pages 119–129. SIAM, 2003.

[22] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T.-Y. Liu. LightGBM: a highly efficient gradient boosting decision
tree. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 30, pages 3149–3157. Curran Associates, Inc.,
2017.

[23] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su. Scaling distributed machine
learning with the parameter server. In Operating Systems Design and
Implementation (OSDI), 2014.

[24] Q. Meng, G. Ke, T. Wang, W. Chen, Q. Ye, Z.-M. Ma, and T. Liu.
A communication-efficient parallel algorithm for decision tree. In
Advances in Neural Information Processing Systems, pages 1279–1287,
2016.

[25] M. Nishio, M. Nishizawa, O. Sugiyama, R. Kojima, M. Yakami,
T. Kuroda, and K. Togashi. Computer-aided diagnosis of lung nodule
using gradient tree boosting and bayesian optimization. PloS one,
13(4):e0195875, 2018.

[26] B. Panda, J. S. Herbach, S. Basu, and R. J. Bayardo. Planet: massively
parallel learning of tree ensembles with mapreduce. Proceedings of the
VLDB Endowment, 2(2):1426–1437, 2009.

[27] B. Peng, B. Zhang, L. Chen, M. Avram, R. Henschel, C. Stewart, S. Zhu,
E. Mccallum, L. Smith, T. Zahniser, J. Omer, and J. Qiu. HarpLDA+:
optimizing latent dirichlet allocation for parallel efficiency. In 2017 IEEE
International Conference on Big Data (Big Data), pages 243–252, Dec.
2017.

[28] J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel
classifier for data mining. In VLDB, volume 96, pages 544–555. Citeseer,
1996.

[29] S. Si, H. Zhang, S. S. Keerthi, D. Mahajan, I. S. Dhillon, and C.-J. Hsieh.
Gradient boosted decision trees for high dimensional sparse output. In
PMLR, pages 3182–3190, July 2017.

[30] A. Srivastava, E.-H. Han, V. Kumar, and V. Singh. Parallel formulations
of decision-tree classification algorithms. Data Mining and Knowledge
Discovery, 3(3):237–261, Sept. 1999.

[31] S. Tyree, K. Q. Weinberger, K. Agrawal, and J. Paykin. Parallel boosted
regression trees for web search ranking. In Proceedings of the 20th
international conference on World wide web, pages 387–396. ACM,
2011.

[32] Z. Wen, B. He, R. Kotagiri, S. Lu, and J. Shi. Efficient gradient boosted
decision tree training on GPUs. In 2018 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 234–243, May
2018.

[33] Y. Xia, C. Liu, Y. Li, and N. Liu. A boosted decision tree approach
using bayesian hyper-parameter optimization for credit scoring. Expert
Systems with Applications, 78:225–241, 2017.

[34] B. Zhang, B. Peng, and J. Qiu. Parallelizing big data machine learning
applications with model rotation. New Frontiers in High Performance
Computing and Big Data, 30:199, 2017.

[35] H. Zhang, S. Si, and C.-J. Hsieh. GPU-acceleration for large-scale tree
boosting. arXiv:1706.08359 [cs, stat], June 2017. arXiv: 1706.08359.

[36] Y. Zhang and A. Haghani. A gradient boosting method to improve
travel time prediction. Transportation Research Part C: Emerging
Technologies, 58:308–324, 2015.

[37] Z. Zhou and J. Feng. Deep forest: towards an alternative to deep neural
networks. arXiv preprint arXiv:1702.08835, 2017.

